Deformation Quantization and Formality Theorem
Specker(s):高浩元 
Time:       
Address:数信学院103  

Deformation Quantization and Formality Theorem

报告人:高浩元

时间:2021-10-12  14:30-17:30pm

地点:数信学院103

摘要:In this talk, we give an introduction to the theory of deformation quantization (also called star product) of Poisson manifolds. Especially we introduce Kontsevich's formality theorem, which states that the differential graded Lie algebras (DGLA) of multi-vector fields and multi-differential operators on a smooth manifold are quasi-isomorphic homotopy Lie algebras. We give some examples of Poisson manifolds and star products and introduce the Schouten-Nijenhuis bracket, which makes the space of multi-vector fileds into a graded Lie algebra. Then we give a brief introduction to the deformation theory of associative algebras via DGLA. Combined, these theories provide material which allows us to understand and appreciate Kontsevich's formality theorem.

Latest Activities
The calculus of variations and energy functional
Weyl form of Schwarzschild solution
Solutions of the wave equation bounded at the Big Bang
Noncommutative Riemannian Geometry via the Moyal Product
Euclidean Schwarzschild metrics
​Metrics of Eguchi Hanson type